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I. Intrcduction

There are several effects which arise from coupling between betsatron and
synchrotron oscillations. These can lead, in the presence of fleld bumps and
gradient errors, to satellite stop bands rnear the integral and hglf-integral
tunes. The purpose of this note is te review some of the effects and to estimate
their lmportasnce for the NAL Booster and Main Ring.

The coupling effects which will be concidered here are:

(a) coupling due to harmonics cf the r-f accelerating force,

(b) coupling due to the dependence of the betatron frequency on longitudinal
momentum. (This effect has been observedl and analyzede.)

(c) coupling due to the longitudinal dependence of the transverse space

charge defocussing force. {This effect has been discussed by M6h13.)

II. Coupling Due to Accelerating Field Harmonics

A, Anslysis
The (coupled) equations of motion for the linearized, smoothed radial
betatron and synchrotron oscillations are (damping effects are neglected in

this analysis):

2 rowy |
L4 (PP = 22— (18)
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*
Permanent Address: Department of Physics and Astronomy, University of Massachusetts,

Amherst, Mass,



-2 - FN-199

2040
2 hw heVeosd
40, 0% _ 0O (4
2 = T 5 (¢ ¢0) [1+ A cosmwot] {1b)
t o) 2mMy ro

The parameters are the usual onesh, with
eV = maximum energy galn per turn
wo = rotation frequency
h = rf harmonic number
. . th . . s th
vm = relative smplitude of the m— harmonic (erising from sum of h + m=—

: th . R
and h - m— spatial harmonic)

For h >> m, one can write

J
z cos mb (2)

where the sum is tasken over the J r~f accelerating gaps (assumed for convenience
to be symmetric about & = C).

It i1s possible to diagonalize the system of equations in (1) in the
absence of Vo leading to the usual separatiocn into betatron and synchrotron
oscillaticns. The v term then represents a coupling of the two oscillations.
Starting with the lagrangian,

2.3 3 2,2 2

L2 r oy, rowy | w “y(vT=y")
;Zi = XX, ° ¢2 4+ 20C 3 - O x2
2 2h2 h 2

eVeosd (¢—¢0)2
- ~>5nm 5 1+ v cosmmot] . (3)

one obtaing the equations of motion:

2 s
+ v = + v =
vox vV X cosmb, 5 v, x¢ =7 Vu¥g cosmé (L)

where x, and x, are the radisl displacements in the two modes, Vg is the rthase

B ¢
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oscillation frequency, and cnly terms of zerc or first order in eV2 > have been
Me B
retained.
These eguations of motion show stop bands at:
v=m=- v for N Y2 (velow transition)
and (5)
2 . 2 .o
voEm v for v© > v° (above transition)
The total width of these stop bands is:
Vg 3/2 "
dv,, = v (— —_—Ll— (6)
SB mw 2 _211/2
[v2oy? )Y
and the e=folding rate at the center of the bands is:
1 mo
TTF Mg (1)

For the combination of signs opposite to those of (5), there is no stop-
band, but in either case there is a modulation of the amplitudes due to the
coupling, even away from rescnance. The pesk amplitude may be estimated from
the invariants formed from the Hamiltonian, or by using phase amplitude methods

in (L), leading to:

Vm Us 2
L - (8e)
V=Y
2
! vm Us
GAB v " E\)_ Aq) (8b)
where
Ay = |m - v v | . (9)

Here GAB and 6A are the increases in radial amplitudes of the betatron and

¢

phase oscillations (meximum values of Xq and x¢). The amplitudes also satisfy

the invariant
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AT = const. (10)

¥ ¢

2
+
AB +

The oscillation growths in Eq. (8) are proporticnal to v, the relative
amplitude of the mEE-SPatial harmonic of the r-f, as defined in (2). Regular
spacing and phesing of r-f cavities in azimuth may lead to the absence of par-
ticular harmonics. Indeed, if it proves necessary to eliminate a troublesome
harmonic, this may be done by eppropriate choice of the azimuth of one or more

r-f cavities.

B. Numerical Values {tsken from NAL Design Report, July 1968}

1. Boocster

With v = 6,T

X
Vo= 0.08
5

v = 1.2
m= 7

Av = 0.22

cos 210° + cos 315° + cos 420° + cos 525°| .

VT = 2 31
we find:
L=k
AvSB = 10
_ =3
6A¢ = 10 ABh
GAB = 3 x 10 A¢
2. Main Ring
With v = 20.25
X
v o= 0,02
s
v = 10
m = 20
Y S
m

Av = 0,23
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we find:
=Y
AUSB = T x 10
-2
<) =
A¢ 10 AB
5. = b x 1070 &
B $

The effect of coupling due to harmonics of the accelerating field is clearly

quite small.

ITI. Coupling Due to Dependence of Betatron Frequency on Momentum

A, Analysis for Field Bumps

The coupled eguations which contain & varistion of betatron frequency
with longitudinal momentum can also be derived from the Hamiltonian, provided
one adds a term of the form x82 ¢ Computation of the side hands then is
governed by the effect of a field bump (or gradient error) in the presence of
the coupling term.,

Although separsate differential equations are cbtained for Xg and x¢, the
effect of XB on x¢ is negligible, so that the zero-order solution for x¢ may

be used in the eguation for XB° The equation for x_, with & field bump is then:

B

dex

— 4 x[\)2 + 2vAv cos{v 8 + )] = b cosmb (11)
d82 8

where Av 1s the amplitude of variation of betatron frequencies, vse + Y is the
phase of the phase oscillation, and b is the amplitude of the 1',:1-1-:11 Fourier
component of the field error. A similar equeation aspplies to the vertical mo-
tion, with the appropriate b and Av.

As has been previously showne, the solution for the homogeneous part of

(11} for small %ﬁ is:
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+ ifde[v + 4V cos(vse + ¥y ] £ 1fve + :7-51n(vse + 4]
x > e = e s
_ o0 . ¥ if(v + n\)s)e + y] . (12)
= I J (=e
n'v
n=-w 5

One can form a Green's function and integrate (11). The amplitude of the closed
orbit distortion then becomes

b Jn(Av/us) -in(vSB + )

S = (13)
n 5
If one value of n dominates, {13) becones

Jn(Av/vs)

A= 2v(m—u-nvs (14)

Obviously for appropriste values of m, v, n, end Vg » the denominator in {1k)
may vanish, leading tc an unacceptable growth in the oscillation amplitude.

However, v_ changes during acceleration, and will not sit indefinitely on s

s
resonance.,
For theose values of n for which L=V-nv does not vanish during accelera-
tion, {14) may be used to estimate the closed orbit amplitude. For those
values of n for which B==11V does vanish during accelerstion, one can calcu-

late the free coscillation amplitude induced in passing through the resonance

in terms of the rate of change of us at resonancea2 The result is:

dv_ - 1/2
Q- == =1 (&Y (15)

v n'v
o s
where vs and de/dt are to be evaluated where myv—nvs vanishes.
The results in {14) and (15) can conveniently be expressed in terms of

Am’ the amplitude cof the clecsed orbit distortion due to the mEE-harmonic of the

error in the absence of coupling:
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: b
Am Y 5y m—v : {16)
Thus ,
A _ mv Ay
A mev-nv n(v ) (x7)
m 8
and
o e
_ 2m s Ay
e = on(mv) [SIR 2] g (&Y (18)
m o) 8

It ig instructive to examine (17) in the 1limit of small vs. For large
srgument, the Bessel funetion in (17) peaks at the order

nn Av/vs
after which it falls rapidly to zero as the order n increases. This implies
the necessity for avoiding the range

v o=m + Av (19)
which is the expected result for s "tune" which swings between v - Av and
v + Av., This is the adisbatic result to which cne is led by following the move-
ment of the operating pcint during acceleration.

For Av/vs of order 1 or less however, {17) and (18) may be appreciable
for values of n as high as 3 or 4. The sidebands in this case may extend be-
yond the limits in (2L), thus more seriously restricting the extent to which
the operating point may wander in Voo

B, Numericsel Exasmples

In the main ring, Vg is sufficiently emall that expression (19) adequately
describes the restriction on v. In the tooster, however, the side-band effects
could be significant. To give some 1dea of the numbers involved, we take as

an example,
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v o=6.7, v, 6.8

m=T

v_ = 0.08

8
Table I gives the contribtutions to the non-resonant closed orbit deviation (KE—
xT7
for a range of Av,
Table T

;bxi 2 3 !

0 1,1 0, 0 0,0 0,0 0,0
-02 -99, -99 olT, .:28 —— —— —
.0k .96, .96 .33, .55 .07, .16 —— -
.06 .93, .93 4T, T8 b, 033 L0k, .ok —
.08 .87, .87 .59, .98 20, .59 .10, .10 0b, .01

These

numbers are not alarming in themselves, indicating at most a factor

of two in closed orbit ampiitude for Av ~ 0.1, which is considerably larger

than anticipated in the design.

However, the numbers are very sensitive to the

Z
-—)
] Az"{

cholice of parameters, so that it would be advisable to plan on keeping the tunes

at or below 6.8 until Vg

trimming, if necessary.

resonance, we take v = 6.8, n

is well below 0.08 and on controlling Av, by sextupole

As an indication of what can happen in passage through

av

3, e 1, and £ = 15 sechl {from the initial

dt

slope in Fig. 9-8 of the Design Report). 'Then, from equation {18), gg"b 2.5

7

which should be dcubled for the subsequent passage through rescnance as Vg de-

cregses, That is to say, & ccherent oscillation would be induced of amplitude

five times that of the normal closed orbit deviation. Fortunetely, for small x

1 n
J (x) ~ =(%)

n!'§

, S0 that the effect decreases rapidly with decreasing Av and

increasing n(= %:&); again the golution would be to depress Av during the criti-

cal period.

8
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C. Analysis for Gradient Errors

The relevant equation is (11} with & right side proportional to x or z:

2
Q—% + x[v2 + 2vav coe(v 8 + y}] = xk cos mb (20)
ds 8

where k 1s the amplitude of the mEE-harmonic of the gradient error. The
analysis parallels that leading to (13). 1In this case one finds a fractional

amplitude growth:

Jn(gﬂv/vs) -in(vse + )

8A _ k|, e : (21)

K- I‘T m--2'\)—n'\i‘3

For passage through & single resonance at v = (m - nAvs)/2 one obtains:

6o _ e (2m dvs]-l/E

wo 4t d

n(2Av/vB). (22)
It 1s convenient to replace k by the stop-band width it would produce at the
nearest half-integer tune:

8, = %3 _ (23)

Then (21) and (22) become, respectively,

24
A Jn(v v)
SA _ "ol s .
el 5:53:53; » (for a single n) (24)
and
dv_ -1/2
SA _ 2mn '8 24
X - “Ao[mo e Jn(vs ) (25)

Since 4  is expected to be v 10-2, the non-resonant beating effect (2L},
is quite small. Also, for Av < Vo (25) yields increases less seriocus than

those of the preceding section.
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IV, Coupling Due to Space Charge

The presence of space charge adds to the complication in the coupling. We
shall consider here the effect treated by Mﬁhl3, which takes into account the
variation of transverse frequency with longitudinal position in the bunch, due
to the variation of the transverse force constant with leongitudinal position.

If one tekes a parsbolic variation in the force constant (corresponding
roughly to a parsebolic variation with azimuth of charge density), one obtains

the equation,

b cosmb
d2x 2 - ¢2
— 4+ v x + 2vav_ {x - x)(1 - ) = (26)
d62 sc 6 2
max xk cosmb

in the presence of field bumps or gradient errors. Here X is the average
radial displecenent of the bunch at a given longitudinal phase, 2¢max is the
phase length of the bunch, and Ausc is the change in tune at the center of the
bunch.

It is not difficult to show that, if image forces are neglected, the field
bump ceuses the beam to acquire a fixed orbit distortion ccherently, and that
the space charge term affects only the relative motion of the individual par-
ticles, not their average. The gradient errors lead to no displacement of the
bunch center, but toc an increase in diameter if resonance ocecurs. An analysis

similar to that of Orlov2 leads Mshl to the result in (25) with the replace-~

ments
2
¢l !
v ey = Ay (1 - =)
sc 24 2
m
2
o) $
Av + Ay = —— (27)
sc 2
2¢
m

vs -+ EvS W,
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where ¢. is the amplitude of the synchrotron cscillation for the particular
1 P

collection of particles being considered. One then cbtains:

2
SA . o [hwn dus]_1/2 I (Avsc ¢1 ) (28)
A o w dt n av 2 *
o s ¢
m
where the resonance occurs for
2
m ¢l
= v + Ay (1 - —i| = nv_ . (29)
2 sc o4 © s
¢m

In order to determine the order of magnitude of (28), we shall consider

the extreme particles in the synchrotron oscillations of the beooster (¢l = ¢m)

and a value of AU"C = ,2, The resonance condition then becomes, with m = 13,
(=]
v = 6.7,
nv_ = .1
s

which can occur forn = 1, v_ = 0.l and/or n = 2, v, = 0.05. From (28), with
dv

5 -1 .
T 15 sec ~, ons finds
(%‘3-) = 150 & (30a)
O
1
(%&) = B85 A (30b)}
0
2
-2

For AO n 1077, {30) looks alarmingly large. Moreover, the booster para-
meters are such that the beam would be right on the n = 2, vs = 0,05 stop-band
at injection, which would lead to a still larger figure. However, the driving
force is so weak that non-linesr effects cannot be neglected. If, for example,
the charge distribution in the beam is taken to be paravolic in the transverse
dimensions, rather then uniform, the resulting cubic terms in the equations of

motion would limit amplitude growths to something less than the envelope de-
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fined by the largest amplitude oscillations. Furthermore, on the basis of

linear theory, the widths of the satellite stop-bands are given by:

2
¢
se 1 )

rr——

Av

An = Aan(Eus 2

%

m

s (31)

which are smeller than Ao. Therefore, if the gradient errors can be trimmed
cut to the point where a low intensity beam can ride on half-integral tune,

as has been saccomplished in existing machines, the satellite stop-bands should
not be troublescme. A more detailed study of these speculative remarks should

prcobebly be made.
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